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Abstract. We determine the asymptotics of the two-point correlation function for quantum
systems with half-integer spin which show chaotic behaviour in the classical limit using a method
introduced by Bogomolny and Keating. For time-reversal-invariant systems we obtain the leading
terms of the two-point correlation function of the Gaussian symplectic ensemble. Special attention
has to be paid to the rôle of Kramers’ degeneracy.

Understanding correlations of energy levels of quantum mechanical systems whose classical
limit exhibits chaotic motion is one of the major topics in quantum chaos. The bridge between
quantum mechanics and classical mechanics is provided by the Gutzwiller trace formula [1],
which relates the quantum mechanical density of states d(E) = ∑

n δ(E − En) to a sum over
periodic orbits of the corresponding classical system,

d(E) ∼ d̄(E) +
1

2πh̄

∑
γ

∑
k∈Z\{0}

Aγ k Tγ exp

[
i

h̄
kSγ (E)

]
h̄ → 0 (1)

where d̄(E) denotes the mean spectral density (which, by Weyl’s law, is of the order of h̄−f

for systems with f degrees of freedom), and the sum extends over all primitive periodic
orbits γ and their repetitions, formally including negative ones. Sγ (E) = ∮

γ

p d
x denotes

the classical action, Tγ is the (primitive) period, Tγ = dSγ (E)/dE, and the amplitude Aγ k

involves topological and stability properties. The conjecture of Bohigas, Giannoni and Schmit
(BGS) [2] states that for classically chaotic systems, generically, the statistics of energy levels
can be modelled by the average behaviour of ensembles of random matrices. In the case of
systems without spin the relevant ensembles are the Gaussian orthogonal and the Gaussian
unitary ensemble (GOE/GUE), depending on whether the system does or does not possess an
antiunitary symmetry such as time reversal (see e.g. [3]). In the case of time-reversal-invariant
systems with half-integer spin one also has to deal with the Gaussian symplectic ensemble
(GSE).

The main result in understanding eigenvalue correlations in terms of the underlying
classical dynamics is due to Berry [4]. He used the so-called diagonal approximation and
the Hannay–Ozorio de Almeida sum rule [5] (see also [6]) to determine the asymptotics of
the spectral form factor, which is the Fourier transform of the two-point correlation function
R2(s) (see equation (6) below). This treatment has recently been generalized to the case with
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half-integer spin [7] using an analogue of the Gutzwiller trace formula for which the amplitudes
Aγ k in (1) include an additional factor due to spin precession [8, 9].

In the case of the GOE and the GUE Bogomolny and Keating [10] (see also [11, 12])
developed a method for the semiclassical evaluation of R2(s), which yields an additional term
as compared to the diagonal approximation of the form factor. More precisely, their method
yields the leading non-oscillatory and the leading oscillatory term of R2(s) as s → ∞, whereas
the diagonal approximation of the form factor corresponds to the leading non-oscillatory
term. Recently Haake [3] proposed a method to adapt this result to the case of the GSE,
but, surprisingly, although he obtained two terms of the large-s asymptotics of R2(s), the
method failed to reproduce the leading term. The aim of this Letter is to present a slightly
different approach to systems with half-integer spin, which correctly yields both the leading
non-oscillatory and the leading oscillatory term. Note that [10] also includes a remark on
GSE asymptotics, which, however, is not based on semiclassics with spin but on a theorem in
random matrix theory and, therefore, is not to be confused with the problem addressed here.

The general method of [10] consists of three main steps. Starting from the observation that
trace formulae lead to accurate semiclassical quantization conditions Bogomolny and Keating
propose to base the semiclassical analysis of spectral correlations on such an approximate
spectrum. In the course of the calculations they, secondly, employ the diagonal approximation
as introduced in [4, 5]. Finally, they make use of the assumption that the oscillating part of
the integrated spectral density (i.e. the contribution of periodic orbits) behaves like a Gaussian
random variable. Here we will only briefly sketch the necessary changes to the method of
Bogomolny and Keating in order to take care of the situation with half-integer spin. For the
general formalism we refer to [3, 10–12]. We will also rely heavily on results of [7].

In order to obtain a simple but efficient semiclassical quantization condition, we first
integrate (1) over the energy E, which yields a trace formula for the spectral staircase function
N(E). Taking into account only orbits up to a time T , which below will be chosen to be of the
order of the Heisenberg timeTH = 2πh̄d̄(E), one obtains a truncated spectral staircase function
NT(E), and the semiclassical eigenvalues En(T ) can be determined from the condition [13,14]

NT(En(T ))
!= n + 1

2 . (2)

The trace formula (1) can easily be integrated if there is a one-to-one correspondence between
orbits at different energies (i.e. no bifurcations occur when varying E), and from successive
integration by parts we see that to leading order in h̄ it is sufficient to integrate the exponential,
i.e.

NT(E) ∼ N̄(E) +
∑
γ

∑
k∈Z\{0}
|k|Tγ �T

1

2π ik
Aγ k exp

[
i

h̄
kSγ (E)

]
h̄ → 0 (3)

where the periodic orbit sum will later be denoted by Nfluc
T (E). At this point it is important

to take care of Kramers’ degeneracy. If the quantum system, with Hamiltonian Ĥ , has half-
integer spin and is invariant under time reversal, i.e. [Ĥ , T̂ ] = 0 with T̂ = iσyK̂ , where K̂ is
the operator of complex conjugation, then each energy eigenvalue has multiplicity of at least
two. One could now attempt to first calculate the correlations for the degenerate spectrum
and relate the result to the correlations of the non-degenerate spectrum (cf [3]). This strategy
is successful for the form factor [7]. However, since the truncated spectral staircase function
NT(E) fails to reproduce sharp steps of size two, the quantization condition (2) will yield
not degenerate eigenvalues but two distinct eigenvalues, which both have an additional error.
Therefore, we instead take Kramers’ degeneracy into account at this point by imposing the
modified quantization condition

NT(En(T ))
!= 2n + 1 (4)
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which produces a semiclassical spectrum {En(T )} with Kramers’ degeneracy already removed.
Note that this semiclassical spectrum has mean density d̄(E)/2, and the corresponding
Heisenberg time is TH = πh̄d̄(E). From here on we closely follow [10]. Using the Poisson
summation formula, the density of states d̃(E) of the semiclassical spectrum can be written as

d̃(E) :=
∑
n

δ(E − En(T )) = 1
2dT(E)

∑
ν∈Z

(−1)ν exp [iπνNT(E)] (5)

where dT(E) = dNT(E)/dT , see (3).
Before we can compare spectral correlations with results from random matrix theory

(RMT) the spectrum has to be unfolded, i.e. the eigenenergies are rescaled such that their mean
separation is unity. Since our treatment also has to cover non-scaling systems such as spectra
of Dirac Hamiltonians, where typically a continuous spectrum is present and the eigenvalues
are confined to the gap (−mc2,mc2), we have to apply a method of unfolding which is slightly
different (although asymptotically equivalent) from the one usually used. To this end consider
the spectral interval I = I (E, h̄) := [E − h̄ω,E + h̄ω], which contains NI levels. In the
semiclassical limit this number can be estimated by NI ∼ 2h̄ωd̄/2, where d̄ = d̄(E), i.e. as
h̄ → 0 the length of the interval shrinks to zero but the number of eigenvalues contained in
I (E, h̄) goes to infinity (cf [7]). Defining the unfolded eigenvalues by xn(T ) := En(T )d̄/2,
the density of states DT(x) = ∑

n δ(x − xn(T )), x = Ed̄/2, of the unfolded spectrum reads
DT(x) = 2d̃T(E)/d̄ . Using (5) the semiclassical two-point correlation function, expressed in
terms of the original variable E, is given by (cf equation (7) in [10])

R2(s, I ) := 1

d̄2

〈
dT

(
E′ +

s

d̄

)
dT

(
E′ − s

d̄

)

×
∑

ν,ν ′∈Z

(−1)ν−ν ′
exp

[
iπ

(
νNT

(
E′ +

s

d̄

)
− ν ′NT

(
E′ − s

d̄

))] 〉
E′

− 1 (6)

where the brackets denote an average over I (E, h̄), i.e. 〈. . .〉E′ = 1
2h̄ω

∫ E+h̄ω
E−h̄ω

· · · dE′. From
the BGS conjecture we expect that in the semiclassical limit R2(s, I ) converges weakly to the
random matrix result, i.e. to RGSE

2 (s) in the case considered here. Following [10] we only aim
at providing a periodic orbit theory for this relation in the combined limit

s → ∞ d̄ → ∞ and s/d̄ → 0 (7)

which will allow expansions in s/d̄ . Here d̄ → ∞ is a consequence of the semiclassical limit
and Weyl’s law. The asymptotics of the GSE result reads (see e.g. [15])

RGSE
2 (s) ∼ π

2

cos(2πs)

2πs
− 1 + π

2 sin(2πs)

(2πs)2
s → ∞. (8)

By a stationary phase argument one easily sees that the terms with ν �= ν ′ are of relative order
O(1/d̄ ) in the desired limit (7), i.e. we have R2(s, I ) ∼ ∑

ν∈Z
rν(s, I ) with

rν(s, I ) := 1

d̄2

〈
dT

(
E′ +

s

d̄

)
dT

(
E′ − s

d̄

)

× exp

[
iπν

(
NT

(
E′ +

s

d̄

)
− NT

(
E′ − s

d̄

))]〉
E′

− δν0. (9)

Note the different pre-factor in the exponent as compared to the respective formula in [10],
which is due to the modified quantization condition (4).

The evaluation of r0(s, I ) is straightforward and will not be shown here. The result
corresponds to the usual diagonal approximation of the form factor (cf [3,10]) and, therefore,
in the present situation reads [7]

r0(s, I ) ≈ − 1

(2πs)2
(10)
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which is the leading non-oscillating contribution of RGSE
2 (s) as s → ∞ (cf (8). Here ‘≈’

indicates that (10) is not just an asymptotic relation but we have also used the diagonal
approximation, which is assumed to be valid in the combined limit (7). Note that unlike
in the GOE and GUE cases (10) is not the leading contribution to RGSE

2 (s) as s → ∞, which
instead is oscillatory and, therefore, has to be provided by the following analysis.

Introducing an auxiliary variable s ′, the contributions rν(s, I ), ν �= 0, can be written as
derivatives,

rν(s, I ) ∼ 1

(iπν)2

∂2

∂s∂s ′ eiπν(s+s ′)
〈
exp

[
iπν

(
Nfluc

T

(
E′ +

s

d̄

)
− Nfluc

T

(
E′ − s ′

d̄

))]〉
E′

∣∣∣∣
s ′=s

(11)

where we have expanded the smooth part N̄(E) of NT(E) in powers of s/d̄. The next
step lies at the heart of the method of [10]. Assuming that the last exponent in (11)
behaves like a Gaussian random variable G(E′) with zero mean we can use the identity
〈exp[iG(E′)]〉E′ = exp[〈−G2(E′)/2〉E′ ] and subsequently evaluate the exponent in the
diagonal approximation. This assumption is favoured by a well established conjecture on
global eigenvalue correlations [16]. Rather than calculating the square of the exponent and
making use of the diagonal approximation in the single terms, as in [10], we prefer to treat
the term as a whole, which will allow for an interesting observation subsequent to our main
result (14). To this end we employ an expansion in s/d̄, yielding

Nfluc
T

(
E′ +

s

d̄

)
− Nfluc

T

(
E′ − s ′

d̄

)
∼

∑
γ

∑
k∈Z\{0}
|k|Tγ �T

Aγ k

2π ik
exp

[
i

h̄
kSγ (E

′)
]

×
(

exp

[
i

h̄
kTγ

(
E′) s

d̄

]
− exp

[
− i

h̄
kTγ

(
E′) s ′

d̄

])
. (12)

Squaring this expression we make use of the diagonal approximation, i.e. we only keep
contributions of orbits with like actions, which basically results in taking the modulus square
of the addends and multiplying by a factor of two, i.e. the generic multiplicity of periodic orbits
in time-reversal invariant systems [4,5]. Since we are dealing with spin- 1

2 systems, recall that
the amplitudes Aγ k also include a weight factor due to spin precession along the orbits [9].
The Hannay–Ozorio de Almeida sum rule [5] can be modified to include these factors [7].
Provided that a certain combination of translational and spin dynamics, which is known as a
skew product flow, is mixing, it was shown that in the limit (7) the spin contribution is given
by an integral over the group SU(2), which yields unity. Therefore, it will not appear in the
subsequent discussion (see [7] for details of this calculation). Using these results we obtain〈(

Nfluc
T

(
E′ +

s

d̄

)
− Nfluc

T

(
E′ − s ′

d̄

))2
〉

E′
≈ g

π2

∫ T

0

1 − cos( s+s ′
h̄d̄

T ′)

T ′ dT ′

∼ g

π2
log

(
s + s ′

h̄d̄
T

)
. (13)

Upon substituting (13) in (11) we observe that the dominating terms derive from ν = ±1 and
are given by

r+1(s, I ) + r−1(s, I ) ≈ h̄d̄

T

cos(2πs)

s
. (14)

Since the cut-off time T has to be chosen to be of the order of the Heisenberg time TH = πh̄d̄, it
has been argued [3,10] that by setting T = CTH and comparing to the RMT result the constant
C can be determined. However, if in (13) we also keep the sub-leading term of the asymptotic
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expansion of the cosine integral, which is given by Euler’s constant, the value of C is altered.
Even worse, corrections of the same order could also arise from non-leading contributions to
the sum rule, which, unfortunately, are unknown. Nevertheless, the s-dependence of (14) is
not affected by these considerations.

Summarizing, the method of Bogomolny and Keating [10] has been applied to time-
reversal-invariant systems with half-integer spin. As in the previously studied cases without
spin it correctly reproduces the leading non-oscillatory term (10) and the s-dependence of the
leading oscillatory term (14) of the two-point correlation function as s → ∞ (cf (8)). We
also remark that in the case of broken time-reversal invariance one has to use the original
quantization condition (2) and thus obtains the same asymptotics as in the case without
spin [10]. These results give further semiclassical evidence for the BGS conjecture, but open
questions, such as a consistent determination of the correct cut-off time T , remain.

I would like to thank Professor F Haake for helpful suggestions and providing me with parts
of his book manuscript [3] prior to publication, and Professor J P Keating for carefully
discussing [10] with me and for many helpful remarks. I am also grateful to Dr J Bolte,
R Schubert and Professor F Steiner for useful discussions. This work was partly supported
by Deutscher Akademischer Austauschdienst (DAAD) under grant no D/99/02553 and by
Deutsche Forschungsgemeinschaft (DFG) under contract no STE 241/10-1.
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